Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bull Natl Res Cent ; 46(1): 267, 2022.
Article in English | MEDLINE | ID: covidwho-2118142

ABSTRACT

Background: Several reports of unheeded complications secondary to the current mass international rollout of SARS-COV-2 vaccines, one of which is myocarditis occurring with the FDA fully approved vaccine, Pfizer, and others. Main body of the abstract: Certain miRNAs (non-coding RNA sequences) are involved in the pathogenesis in viral myocarditis, and those miRNAs are interestingly upregulated in severe COVID-19. We hypothesize that the use of mRNA-based vaccines may be triggering the release of host miRNAs or that trigger the occurrence of myocarditis. This is based on the finding of altered host miRNA expression promoting virus-induced myocarditis. Short conclusion: In conclusion, miRNAs are likely implicated in myocarditis associated with mRNA vaccines. Our hypothesis suggests the use of miRNA as a biomarker for the diagnosis of mRNA vaccine-induced myocarditis. Additionally, the interplay between viral miRNA and the host immune system could alter inflammatory profiles, hence suggesting the use of therapeutic inhibition to prevent such complications.

2.
Egypt Heart J ; 73(1): 76, 2021 Aug 30.
Article in English | MEDLINE | ID: covidwho-1378125

ABSTRACT

Arrhythmia, one of the most common complications of COVID-19, was reported in nearly one-third of diagnosed COVID-19 patients, with higher prevalence rate among ICU admitted patients. The underlying etiology for arrhythmia in these cases are mostly multifactorial as those patients may suffer from one or more of the following predisposing mechanisms; catecholamine surge, hypoxia, myocarditis, cytokine storm, QTc prolongation, electrolyte disturbance, and pro-arrhythmic drugs usage. Obviously, the risk for arrhythmia and the associated lethal outcome would rise dramatically among patients with preexisting cardiac disease such as myocardial ischemia, heart failure, cardiomyopathy, and hereditary arrhythmias. Considering all of these variables, the management strategy of COVID-19 patients should expand from managing a viral infection and related host immune response to include the prevention of predictable causes for arrhythmia. This may necessitate the need to investigate the role of some drugs that modulate the pathway of arrhythmia generation. Of these drugs, we discuss the potential role of adrenergic antagonists, trimetazidine, ranolazine, and the debatable angiotensin converting enzyme inhibitors drugs. We also recommend monitoring the level of: unbound free fatty acids, serum electrolytes, troponin, and QTc (even in the absence of apparent pro-arrhythmic drug use) as these may be the only indicators for patients at risk for arrhythmic complications.

3.
Cardiovasc Endocrinol Metab ; 10(3): 162-167, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1356748

ABSTRACT

To date, coronavirus disease 2019 (COVID-19) has affected over 6.2 million individuals worldwide, including 1.46 million deaths. COVID-19 complications are mainly induced by low-grade inflammation-causing vascular degeneration. There is an increasing body of evidence that suggests that oral dysbiotic taxa are associated with worse prognosis in COVID-19 patients, especially the Prevotella genus, which was retrieved from nasopharyngeal and bronchoalveolar lavage samples in affected patients. Oral dysbiosis may act by increasing the likelihood of vascular complications through low-grade inflammation, as well as impairing respiratory mucosal barrier mechanisms against SARS-CoV-2. Salivary markers can be used to reflect this oral dysbiosis and its subsequent damaging effects on and the lungs and vasculature. Salivary sampling can be self-collected, and is less costly and less invasive, and thus may be a superior option to serum markers in risk stratification of COVID-19 patients. Prospective studies are needed to confirm such hypothesis. Video Abstract: http://links.lww.com/CAEN/A28.

4.
Inflammopharmacology ; 29(4): 1017-1031, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1286160

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-COV-2) is the culprit of the Coronavirus Disease (COVID-19), which has infected approximately 173 million people and killed more than 3.73 million. At risk groups including diabetic and obese patients are more vulnerable to COVID-19-related complications and poor outcomes. Substantial evidence points to hypovitaminosis D as a risk factor for severe disease, the need for ICU, and mortality. 1,25(OH)D, a key regulator of calcium homeostasis, is believed to have various immune-regulatory roles including; promoting anti-inflammatory cytokines, down regulating pro-inflammatory cytokines, dampening entry and replication of SARS-COV-2, and the production of antimicrobial peptides. In addition, there are strong connections which suggest that dysregulated 1,25(OH)D levels play a mechanistic and pathophysiologic role in several disease processes that are shared with COVID-19 including: diabetes, obesity, acute respiratory distress syndrome (ARDS), cytokine storm, and even hypercoagulable states. With evidence continuing to grow for the case that low vitamin D status is a risk factor for COVID-19 disease and poor outcomes, there is a need now to address the public health efforts set in place to minimize infection, such as lock down orders, which may have inadvertently increased hypovitaminosis D in the general population and those already at risk (elderly, obese, and disabled). Moreover, there is a need to address the implications of this evidence and how we may apply the use of cheaply available supplementation, which has yet to overcome the near global concern of hypovitaminosis D. In our review, we exhaustively scope these shared pathophysiologic connections between COVID-19 and hypovitaminosis D.


Subject(s)
COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Thrombophilia/metabolism , Vitamin D Deficiency/metabolism , Vitamin D/administration & dosage , Vitamin D/metabolism , COVID-19/complications , COVID-19/physiopathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/physiopathology , Humans , Obesity/epidemiology , Obesity/metabolism , Obesity/physiopathology , Risk Factors , Thrombophilia/drug therapy , Thrombophilia/physiopathology , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/physiopathology , COVID-19 Drug Treatment
5.
Cardiovasc Endocrinol Metab ; 10(2): 80-88, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1254955

ABSTRACT

The adaptive use of Janus kinase (JAK)-inhibitors has been suggested by rheumatology experts in the management of COVID-19. We recount the rationale behind their use in this setting, and the current evidence for and against their use in this review. JAK-inhibitors role in COVID-19 infection appears to be multifaceted, including preventing viral endocytosis and dampening the effect of excessive chemokines. This drug class may be able to achieve these effects at already preapproved dosages. Concerns arise regarding reactivation of latent viral infections and the feasibility of their use in those with severe disease. Most interestingly, JAK-Inhibitors may also have an additional advantage for diabetic and obese populations, where the dysregulation of JAK-signal transducer and activator of transcription pathway may be responsible for their increased risk of poor outcomes. Targeting this pathway may provide a therapeutic advantage for these patient groups.

6.
J Genet Eng Biotechnol ; 19(1): 82, 2021 May 31.
Article in English | MEDLINE | ID: covidwho-1247615

ABSTRACT

BACKGROUND: Several coronavirus vaccine have been fast-tracked to halt the pandemic, the usage of immune adjuvants that can boost immunological memory has come up to the surface. This is particularly of importance in view of the rates of failure of seroconversion and re-infection after COVID-19 infection, which could make the vaccine role and response debatable. Peroxisome proliferator-activated receptors (PPARs) have an established immune-modulatory role, but their effects as adjuvants to vaccination have not been explored to date. It is increasingly recognized that PPAR agonists can upregulate the levels of anti-apoptotic factors such as MCL-1. Such effect can improve the results of vaccination by enhancing the longevity of long-lived plasma cells (LLPCs). The interaction between PPAR agonists and the immune system does not halt here, as T cell memory is also stimulated through enhanced T regulatory cells, antagonizing PD-L1 and switching the metabolism of T cells to fatty acid oxidation, which has a remarkable effect on the persistence of T memory cells. What is even of a more significant value is the effect of PPAR gamma on ensuring a profound secretion of antibodies upon re-exposure to the offending antigen through upregulating lipoxin B4, therefore potentially assisting the vaccine response and deterring re-infection. SHORT CONCLUSION: In view of the above, we suggest the use of PPAR as adjuvants to vaccines in general especially the emerging COVID-19 vaccine due to their role in enhancing immunologic memory through DNA-dependent mechanisms.

7.
Egyptian Pediatric Association Gazette ; 69(1), 2021.
Article in English | PMC | ID: covidwho-1191597

ABSTRACT

Background: COVID-19 is the largest outbreak to strike humanity. The wide scale of fatalities and morbidities lead to a concurrent pandemic of uncertainty in scientic evidence. Conicting evidences are released on daily basis about the neonatal outcomes of COVID-19 positive mothers. The aim of this study was to use the relevant case reports and series to determine the percentage of newborns who test positive in COVID-19 positive mothers. Secondary outcomes included examining laboratory and placental abnormalities among fetus-mother pairs. Methods: Systematic review was performed on all studies reporting primary data on fetus-mother pairs with COVID-19. Data bases were searched for studies that met our inclusion and exclusion criteria. Results: Final screening revealed 66 studies, from which the primary data of 1787 mother-infant pairs was obtained. Only 2.8% of mother infant pairs were tested positive, and this nding is identical to percentages reported in former coronaviridae outbreaks. Whereas, 20% manifested with intrauterine hypoxia alongside placental abnormalities suggestive of heavy placental vaso-occlusive involvement. Conclusions: These ndings suggest that while vertical transmission is unlikely, there appears to be an underlying risk of placental insuciency due to the prothrombotic tendency observed in COVID-19 infection. Guidelines for proper prophylactic anticoagulation in COVID positive mothers need to be established.

8.
Med Hypotheses ; 148: 110520, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1051862

ABSTRACT

Following the decline in Physical Activity (PA) due to COVID-19 restrictions in the form of government mandated lockdowns and closures of public spaces, the modulatory effect of physical exercise on immunity is being heavily revisited. In an attempt to comprehend the wide discrepancy in patient response to COVID-19 and the factors that potentially modulate it, we summarize the findings relating PA to inflammation and immunity. A distinction is drawn between moderate intensity and high intensity physical exercise based on the high lactate production observed in the latter. We hypothesize that, the lactate production associated with high intensity anaerobic exercise is implicated in the modulation of several components of the innate and adaptive immunity. In this review, we also summarize these immunomodulatory effects of lactate. These include increasing serum IL-6 levels, the main mediator of cytokine storms, as well as affecting NK cells, Macrophages, Dendritic cells and cytotoxic T-lymphocytes. The implications of high lactate levels in athletic performance are highlighted where athletes should undergo endurance training to increase VO2 max and minimize lactate production. Tumor models of hypoxia were also reported where lactate levels are elevated leading to increased invasiveness and angiogenesis. Accordingly, the novel lactate blocking strategy employed in cancer treatment is evaluated for its potential benefit in COVID-19 in addition to the readily available beta-blockers as an antagonist to lactate. Finally, we suggest the diagnostic/prognostic purpose of the elevated lactate levels that can be determined through sweat lactate testing. It is the detrimental effect of lactate on immunity and its presence in sweat that qualify it to be used as a potential non-invasive marker of poor COVID-19 outcome.


Subject(s)
COVID-19 Drug Treatment , Lactic Acid/antagonists & inhibitors , Anaerobiosis/immunology , COVID-19/immunology , COVID-19/physiopathology , Exercise/physiology , Humans , Inflammation/immunology , Interleukin-6/blood , Lactic Acid/immunology , Lactic Acid/metabolism , Models, Immunological , Pandemics , SARS-CoV-2
9.
Obes Med ; 20: 100303, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-929296

ABSTRACT

COVID-19 has shown a substantial variation in the rate and severity by which it impacts different demographic groups. Specifically, it has shown a predilection towards obese patients as well as well as other vulnerable groups including predilection of males over females, old age over young age and black races over Caucasian ones. Single cell sequencing studies have highlighted the role of cell polarity and the co-expression of proteases, such as Furin, along with ACE2 in the genesis of coronavirus disease rather than exclusively link tissue involvement with ACE2 levels thought previously. It has also forged a connection between the genetic and immune cellular mechanisms underlying COVID infection and the inflammatory state of obese patients, offering a more accurate explanation as to why obese patients are at increased risk of poor COVID outcomes. These commonalities encompass macrophage phenotype switching, genetic expression switching, and overexpression of the pro-inflammatory cytokines, depletion of the regulatory cytokines, in situ T cell proliferation, and T cell exhaustion. These findings demonstrate the necessity of single cell sequencing as a rapid means to identify and treat those who are most likely to need hospital admission and intensive care, in the hopes of precision medicine. Furthermore, this study underlines the use of immune modulators such as Leptin sensitizers, rather than immune suppressors as anti-inflammation therapies to switch the inflammatory response from a drastic immunological type 1 response to a beneficial type 2 effective one.

10.
Med Hypotheses ; 145: 110343, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-842726

ABSTRACT

ABO blood groups is a cheap and affordable test that can be immediately retrieved from COVID-19 patients at the diagnosis. There is increasing evidence that non-O blood groups have both higher susceptibility and higher severity of COVID-19 infections. The reason behind such relationship seems elusive. Regarding susceptibility, Non-O individuals have Anti-A antibodies which can prevent viral entry across ACE-2 receptors, moreover, Non-O individuals are at higher risk of autoimmunity, hypercoagulable state, and dysbiosis resulting in an augmented tendency for vascular inflammatory sequelae of COVID-19. We can conclude, on the diagnostic level, that ABO blood groups can be potentially used for risk stratification of affected COVID-19 patients, to anticipate the deterioration of patients at higher risk for complications. On a therapeutic level, plasma from normal O blood group individuals might potentially replace the use of convalescent serum for the treatment of COVID-19.


Subject(s)
ABO Blood-Group System , COVID-19 Serological Testing/methods , COVID-19/blood , COVID-19/diagnosis , Risk Assessment/methods , Antibodies/chemistry , Autoimmunity , COVID-19/immunology , COVID-19/therapy , Disease Progression , Female , Furin/metabolism , Gastrointestinal Microbiome , Humans , Immunization, Passive , Male , Pandemics , Thrombosis , COVID-19 Serotherapy
11.
Cardiovasc Endocrinol Metab ; 9(3): 110-120, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-681075

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a serious illness that has rapidly spread throughout the globe. The seriousness of complications puts significant pressures on hospital resources, especially the availability of ICU and ventilators. Current evidence suggests that COVID-19 pathogenesis majorly involves microvascular injury induced by hypercytokinemia, namely interleukin 6 (IL-6). We recount the suggested inflammatory pathway for COVID-19 and its effects on various organ systems, including respiratory, cardiac, hematologic, reproductive, and nervous organ systems, as well examine the role of hypercytokinemia in the at-risk geriatric and obesity subgroups with upregulated cytokines' profile. In view of these findings, we strongly encourage the conduction of prospective studies to determine the baseline levels of IL-6 in infected patients, which can predict a negative outcome in COVID-19 cases, with subsequent early administration of IL-6 inhibitors, to decrease the need for ICU admission and the pressure on healthcare systems. Video abstract: http://links.lww.com/CAEN/A24.

12.
Obes Med ; 19: 100281, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-645431

ABSTRACT

Furin, a cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndrome. Its cleavage action is an essential activation step for the endothelial pathogenicity of several viruses including SARS-CoV-2. This Furin-mediated endothelial tropism seems to underlie the multi-organ system involvement of COVID-19; which is a feature that was not recognized in the older versions of coronaviridae. Obese and diabetic patients, males, and the elderly, have increased serum levels of Furin, with its increased cellular activity; this might explain why these subgroups are at an increased risk of COVID-19 related complications and deaths. In contrast, smoking decreases cellular levels of Furin, this finding may be at the origin of the decreased severity of COVID-19 in smokers. Chinese herbal derived luteolin is suggested to be putative Furin inhibitor, with previous success against Dengue Fever. Additionally, Furin intracellular levels are largely dependent on concentration of intracellular ions, notably sodium, potassium, and magnesium. Consequently, the use of ion channel inhibitors, such as Calcium Channel blockers or Potassium Channel blockers, can prevent cellular transfection early in the course of the illness. Nicotine patches and Colchicine have also been suggested as potential therapies due to Furin mediated inhibition of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL